Data Science Design: Texts In Computer Science - The Manual Hardcover
Recommend
Sort by
Rating
Date
Specifications
Author 1
Steven S. Skiena
Book Description
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an "Introduction to Data Science" course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well.
ISBN-10
3319554433
ISBN-13
9.78332E+12
Language
English
Publisher
Springer International Publishing AG
Publication Date
29 Aug 2017
Number of Pages
445
About the Author
Dr. Steven S. Skiena is Distinguished Teaching Professor of Computer Science at Stony Brook University, with research interests in data science, natural language processing, and algorithms. He was awarded the IEEE Computer Science and Engineering Undergraduate Teaching Award "for outstanding contributions to undergraduate education ...and for influential textbooks and software." Dr. Skiena is the author of six books, including the popular Springer titles The Algorithm Design Manual and Programming Challenges: The Programming Contest Training Manual.