Data-Driven Computational Methods Hardcover
Recommend
Sort by
Rating
Date
Specifications
Author 1
John Harlim
Book Description
Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLABxae codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study. Book Description: The mathematics behind, and the practice of, computational methods that leverage data for modelling dynamical systems are described in this book. It will teach readers how to fit data on the assumed model and how to use data to determine the underlying model. Suitable for graduate students in applied mathematics, statistics, and engineering.
ISBN-10
1108472478
Language
English
Publication Date
2018