En
English

Thermodynamics Of Magnetizing Materials And Superconductors Hardcover 1st Edition

Recommend
0 %
Authors Estimates
0
1
0
2
0
3
0
4
0
5
Sort by
Rating
Date
Specifications
Author 1
Vladimir Kozhevnikov
Book Description
This book will help readers understand thermodynamic properties caused by magnetic fields. Providing a concise review of time independent magnetic fields, it goes on to discuss the thermodynamic properties of magnetizing materials of different shapes, and finally, the equilibrium properties of superconductors of different shapes and also of different sizes. Chapters are accompanied by problems illustrating the applications of the principles to optimize and enhance understanding. This book will be of interest to advanced undergraduates, graduate students, and researchers specializing in thermodynamics, solid state physics, magnetism, and superconductivity. Features: The first book to provide comprehensive coverage of thermodynamics in magnetic fields, only previously available, in part, in journal articles Chapters include problems and worked solutions demonstrating real questions in contemporary superconductivity, such as properties of vortex matter
ISBN-10
1138499935
ISBN-13
9781138499935
Language
English
Publisher
Taylor & Francis Ltd
Publication Date
2019-06-10
Number of Pages
133
About the Author
Vladimir F. Kozhevnikov is a visiting researcher at the Katholieke Universiteit Leuven, Belgium, and a retired professor of Tulsa Community College, USA. He received his PhD from the Moscow Aviation Institute and Sc.D. in physics and mathematics from the Kurchatov Institute of Atomic Energy, Russia. His research interests primarily include superconductivity, phase transitions and critical phenomena, and thermodynamics. Dr. Kozhevikov has published over 60 papers and was the recipient of the 'Kurchatov Prize' in 1996.
Edition Number
1st Edition
Editorial Review
"Kozhevinkov's book is a succinct and delightfully clear exposition of the fundamental thermodynamic principles underlying magnetic and superconducting materials. Each chapter concludes with a set of problems augmented by worked solutions, which will make the book very suitable for anyone trying to get to grips with this notoriously thorny subject." - Prof. Stephen Blundell, Department of Physics, University of Oxford